metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.30D10, C10.52+ 1+4, C20⋊7D4⋊4C2, D10⋊D4⋊2C2, (C2×D20)⋊4C22, C24⋊2D5⋊3C2, C4⋊Dic5⋊6C22, C20.48D4⋊4C2, (C2×C10).38C24, C22⋊C4.87D10, (C22×C4).45D10, D10.12D4⋊2C2, C2.9(D4⋊6D10), D10⋊C4⋊2C22, (C2×C20).131C23, Dic5.5D4⋊2C2, C5⋊1(C22.32C24), (C2×Dic10)⋊3C22, (C4×Dic5)⋊48C22, C23.D10⋊1C2, C10.D4⋊2C22, C23.82(C22×D5), C22.77(C23×D5), C23.D5.2C22, C22.23(C4○D20), (C23×C10).64C22, (C2×Dic5).11C23, (C22×D5).10C23, (C22×C20).355C22, (C22×C10).128C23, (C4×C5⋊D4)⋊34C2, (C2×C4×D5)⋊41C22, (C2×C22⋊C4)⋊17D5, C10.16(C2×C4○D4), C2.18(C2×C4○D20), (C10×C22⋊C4)⋊20C2, (C2×C5⋊D4).7C22, (C2×C4).261(C22×D5), (C2×C10).104(C4○D4), (C5×C22⋊C4).109C22, SmallGroup(320,1166)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C4×C5⋊D4 — C24.30D10 |
Generators and relations for C24.30D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=f2=c, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >
Subgroups: 926 in 250 conjugacy classes, 95 normal (31 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42⋊2C2, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C22×D5, C22×C10, C22×C10, C22×C10, C22.32C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C2×C5⋊D4, C22×C20, C23×C10, C23.D10, D10.12D4, D10⋊D4, Dic5.5D4, C20.48D4, C4×C5⋊D4, C20⋊7D4, C24⋊2D5, C10×C22⋊C4, C24.30D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.32C24, C4○D20, C23×D5, C2×C4○D20, D4⋊6D10, C24.30D10
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(2 22)(4 24)(6 26)(8 28)(10 30)(12 32)(14 34)(16 36)(18 38)(20 40)(41 69)(42 52)(43 71)(44 54)(45 73)(46 56)(47 75)(48 58)(49 77)(50 60)(51 79)(53 61)(55 63)(57 65)(59 67)(62 72)(64 74)(66 76)(68 78)(70 80)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 79)(42 80)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 73 11 63)(2 62 12 72)(3 71 13 61)(4 80 14 70)(5 69 15 79)(6 78 16 68)(7 67 17 77)(8 76 18 66)(9 65 19 75)(10 74 20 64)(21 55 31 45)(22 44 32 54)(23 53 33 43)(24 42 34 52)(25 51 35 41)(26 60 36 50)(27 49 37 59)(28 58 38 48)(29 47 39 57)(30 56 40 46)
G:=sub<Sym(80)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(41,69)(42,52)(43,71)(44,54)(45,73)(46,56)(47,75)(48,58)(49,77)(50,60)(51,79)(53,61)(55,63)(57,65)(59,67)(62,72)(64,74)(66,76)(68,78)(70,80), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,79)(42,80)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,73,11,63)(2,62,12,72)(3,71,13,61)(4,80,14,70)(5,69,15,79)(6,78,16,68)(7,67,17,77)(8,76,18,66)(9,65,19,75)(10,74,20,64)(21,55,31,45)(22,44,32,54)(23,53,33,43)(24,42,34,52)(25,51,35,41)(26,60,36,50)(27,49,37,59)(28,58,38,48)(29,47,39,57)(30,56,40,46)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(41,69)(42,52)(43,71)(44,54)(45,73)(46,56)(47,75)(48,58)(49,77)(50,60)(51,79)(53,61)(55,63)(57,65)(59,67)(62,72)(64,74)(66,76)(68,78)(70,80), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,79)(42,80)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,73,11,63)(2,62,12,72)(3,71,13,61)(4,80,14,70)(5,69,15,79)(6,78,16,68)(7,67,17,77)(8,76,18,66)(9,65,19,75)(10,74,20,64)(21,55,31,45)(22,44,32,54)(23,53,33,43)(24,42,34,52)(25,51,35,41)(26,60,36,50)(27,49,37,59)(28,58,38,48)(29,47,39,57)(30,56,40,46) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(2,22),(4,24),(6,26),(8,28),(10,30),(12,32),(14,34),(16,36),(18,38),(20,40),(41,69),(42,52),(43,71),(44,54),(45,73),(46,56),(47,75),(48,58),(49,77),(50,60),(51,79),(53,61),(55,63),(57,65),(59,67),(62,72),(64,74),(66,76),(68,78),(70,80)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,79),(42,80),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,73,11,63),(2,62,12,72),(3,71,13,61),(4,80,14,70),(5,69,15,79),(6,78,16,68),(7,67,17,77),(8,76,18,66),(9,65,19,75),(10,74,20,64),(21,55,31,45),(22,44,32,54),(23,53,33,43),(24,42,34,52),(25,51,35,41),(26,60,36,50),(27,49,37,59),(28,58,38,48),(29,47,39,57),(30,56,40,46)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | C4○D20 | 2+ 1+4 | D4⋊6D10 |
kernel | C24.30D10 | C23.D10 | D10.12D4 | D10⋊D4 | Dic5.5D4 | C20.48D4 | C4×C5⋊D4 | C20⋊7D4 | C24⋊2D5 | C10×C22⋊C4 | C2×C22⋊C4 | C2×C10 | C22⋊C4 | C22×C4 | C24 | C22 | C10 | C2 |
# reps | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 4 | 8 | 4 | 2 | 16 | 2 | 8 |
Matrix representation of C24.30D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 0 | 0 | 18 | 0 |
24 | 30 | 0 | 0 | 0 | 0 |
4 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,18,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,18,0,0,0,0,18,0],[24,4,0,0,0,0,30,17,0,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,18,0,0,0,0,18,0,0,0] >;
C24.30D10 in GAP, Magma, Sage, TeX
C_2^4._{30}D_{10}
% in TeX
G:=Group("C2^4.30D10");
// GroupNames label
G:=SmallGroup(320,1166);
// by ID
G=gap.SmallGroup(320,1166);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=f^2=c,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations